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1. INTRODUCTION
An investigation of the methods of solving large linear

systems would not normally include an investigation into methods of
finding the reciprocal of a matrix unless such reciprocals were di-
rectly applicable to the solution. Reciprocal matrices appear to
have little use in solving large systems; and the number of steps re-
quired for a solution is greater and the avoidance of small divisors
in the solving process is often difficult and sometimes impossible.
Nevertheless, there is at least one good reason for including recipro-
cal matrices in the investigation; every problem of practical interest
requires for a complete solution, not only the values of the unknowns,
but also estimates of the reliabilities of these values, and the re-
liabilities are commonly expressed in terms of the elements of a recip-
rocal matrix. That is, if the problem requires that the vector X be
found as a function of the observation vector Y, where:

Y= £(X) , (1)
a linear system of equations is derived (if f is not already linear)
by finding the matrix A= [3Y/3X) (2)
and solving, instead of (1), the simpler equation:

AY = AAX (3)

where:

Y (assumed) + AY

<
!

(4)

]
]

X (assumed) + AX
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If A is the generalized reciprocal of A (ref. 1,2,3)

-1

- -1
A z (ATA) AT
- , (5)
A = A
then
- -1
A AY =X . (6)
2 2
The variance ZX of X is related to the variance ZY of Y by
2 -2 -1
— - T
= A b (7
D : S GO R (7
and this, scr
2
ZY = 4
gives
2 -
e = (w7 : (8)

Since several solution procedures allow computation of (ATA)—1 almost
simultaneously with computation of AX, and in such a way that some

steps in the computation are the same for (ATA)-_1 and AX, it seems
natural to include an investigation of methods of computing K-l(or, more
usually [ATA]_I) when such investigation forms a natural part of the main
problem.

The theory of very large linear systems is a subset in the
theory of linear systems. It has grown rapidly along with the growth in
size and speed of computers able to use such theory, and now has an ex-
tensive literature of its own. (Appendix T gives a fairly complete bib-
liography of the literature through 1966; it is an expanded version of a

bibliography submitted previously.) The subject is,in fact, so great that

an investigation of limited range like the present cannot hope to even



start covering more than a small part of the subject. The investi-
gation has, therefore, been restricted to those aspects of the sub-
ject which appeared most promising of new or useful results, or on
which so little work had been done that further investigation was
needed to find out what might result. In other words, to make effi-
cient use of the limited effort allotted, this effort was channeled
into the investigation of a small number of avenues which were rela-
tively unexplained but held some promise of leading to useful results.
The avenues chosen for investigation were the following.

1.1 Review and Evaluation of Major Procedures Now in Use

There is a vast variety of procedures given in the literature.
They are most of them variants of a few major procedures, and differences
between varieties within a major category are small when applied to a
general problem although they may be large for particular varieties of
problems. Hence, the major varieties were classified, investigated, and
evaluated on the basis of three criteria: 1) number of operations re-

quired for solution, 2) rate of error accumulation, and 3) ease of com-
-1

putation of A . This part of the investigation is discussed in Section
2 below.
1.2 Solution of Singular or Poorly Conditioned Systems

It is well known that as the order of a square matrix (or the
number m of columns in an m x n matrix, m < n) increases, the rank of
the matrix (which cannot be greater than m in any case) has a tendency
to decrease and the condition numbers to increase (where condition numbers

are defined and have significance for rectangular matrices). These
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tendencies result from computational and physical causes, not from mathe-
matical causes. Increasing m means increasing the number of unknowns AX
and, thereby, weakening the geometric structure which A describes. For
example, each time a triangulation is barycentrically subdivided (which
corresponds to increasing m of the matrix) the triangles which are ele-
ments of the subdivisions approach as a limit triangles with parallel sides.
The same is true of elementary subdivisions, (but not of similarity -- pre-
serving subdivision). Computationally, increase in m implies an increase
in the number of computation operations involved. Each increase in number
of operations increases the round-off error in the result.

Since near-singularity is a condition which would be expected
frequently in large linear systems, we thought it worthwhile to investi-
gate methods which would give answers whether the A matrix was poorly con-
ditioned or even singular. A procedure for assuring that a solution of
any square linear system was derived by J. Hawkins on purely theoretical
grounds. A description of the procedure comparison with other procedures,
and evaluation of the Hawkins procedure, is given in Section 3 below.

1.3 The Matrix as a Continuous Function

The properties of very small matrices can be worked out by
considering each possible variation of the matrix elements. For matrices
of order greater than, say, four, such an investigation procedure involves
too many different possible cases, and more general rules of behavior must
be found. So far, no complete description of those properties of a matrix
that are important in solving the associated linear system has been achieved,

in fact, knowledge on this subject is still sketchy. As order of the matrix



grows, however, the possibility arises of approximating the matrix by a
function in two variables and of using the function properties as a des-
cription of the matrix properties. In particular, if:

Aij T A(x,y)

then we look for the function N corresponding to (ATA)_1 and to (ATA)_1 AT.

-_—1

That function N then approximately describes A *, has the same singulari-
ties and the same errors. The work done is described in Section 4 below.

1.4 The Matrix As a Geometric Object

Sets (of matrices) can be defined in such a manner as to be
groups. Conversely, any group has a matrix representation. Further,
groups can be identified with certain geometric surface properties so that
there is a 1 to 1 correspondence between classes of groups and classes of
surfaces. Hence, it seems reasonable to ask: What kind of classes of sur-
faces correspond to very large linear systems, and to what topological
transformation does the inversion of a matrix correspond? If these ques-
tions can be found and are computationally meaningful, perhaps a study of
surface properties will give valuable information about the properties of
large matrices. Unfortunately, topology, which is the discipline concerned
with surface properties that are invariant under continuous transformation,
is a very recent development, is still largely intuitive in those areas
which are significant, and is trivial elsewhere. One must, therefore, use
care in using topology to trace the connection between matrices and sur-
faces. There is still very much to be done, and Section 5 below describes
the problems involved in pushing further ahead, as well as describing what

has been done.



1.5 Specific Computational Difficulties

There is no theoretical limit to the size of the system of
linear equations that can be solved. There are many practical limits,
however, and the most important of these are 1) the amount of time avail-
able for computations, 2) the number of significant figures that can be
handled in a single operation, and 3) the rate at which round off errors
accumulate. These three limitations are correlated to some extent; any
solvable problem can be solved to any desired precision if enough time
is allowed, for instance. One can nevertheless find a number of features
which are common to all problems and which can be modified to improve the
solution procedure for large linear systems. One of these features is
the number of significant figures needed per number manipulated; another
is relative positions of zero and non-zero elements. Section 6 discusses

these matters.



2. REVIEW AND EVALUATION OF PROCEDURE FOR SOLUTION OF LINEAR
SYSTEMS
2.1 Classification of Procedures

The sharpest distinction between solution procedures is afford-
ed by using as criterion the number of steps needed to arrive at a satis-
factory solution. A direct procedure is one in which the number Ny of
elementary operations (addition, subtraction, multiplication, division)
needed to fix AX to a given number of significant figures is independent
of the values of AY and A. An indirect procedure is one in which Ny de-
pends upon the values of AY and/or A. The indirect procedures can be
further distinguished accordingly as initial approximate values of AX are
or are not required, and accordingly as the number of operations can or
cannot be shown to be finite. Some procedures, such as that of J. Hawkins
(Section 3) can be shown to approach a solution regardless of the avail-
ability of approximate values for AX; some of the gradient methods, on
the other hand, require the approximate value of AX to be within a cer-
tain distance of the true value, if the sequence of operations is to give
convincing results. (See Table 1)

These definitions are made on theoretical grounds only. They do
not consider the way an actual computation procedure may be affected by
the calculating machine used. For instance, although a large class of
computational procedures can be shown to consist of convergent procedues

for the particular problem:

ATay = aTanx,

where (ATA) is positive definite for a real matrix A, the procedures may



CLASSIFICATION OF PROCEDURES

DIRECT PROCEDURES

1.1 General
1.1.1 Gauss (Reduction and Variants)
1.1.2 Inversion
1.1.3 Enlargement
Escalator and Bordering Methods

1.2 Special
1.2.1 Square Root Method
INDIRECT PROCEDURES

Universally-Convergent Procedures
Conditionally-Convergent Procedures

1
.2 Methods Using Previous Values

Table 1

Methods Involving Current Values Only



actually diverge because of the accumulation of round-off errors. This
is particularly true of iterative procedures where a poor first approxi-
mation may result in large correction numbers.

Suppose we have:

Y A X
nx1l nxm mx1

this can always be changed to a similar problem with a square matrix:

Y - Al X
mx1 mxn  nxl
by the mappings
y' = ATy
A' = ATA .

The matrix A' is in fact positive-definite and, in addition, symmetric.
Any problem can, therefore, be converted to a problem with A' or A posi-
tive definite and symmetric. In most of what follows, however, it will
only be assumed that A is square. This assumption does away with
EEL-%%j;Ll multiplications and E%E additions which are not really need-
ed if A is already square.

It may be noted here that even conversion to a square matrix
before solution is not necessary according to some procedures (Creusen,
1965). It can be shown, however, that these procedures are in fact mathe-
matically the same as the presquaring procedures in that the ATA matrix
is effectively formed during the solution process.

The class 1.1 of reduction methods starts from the complete

set of linear equations:




By a series of premultiplications the equation is transformed into
Y' = A'X
where A' has all zeros velow the main diagonal. The transpose is then

taken, T T

@t =1t @anT

and this brought, by a series of post-multiplications, down to
@t = xT1
This is essentially the family of Gaussian procedures; the various family
members differ in the sequence of operations, in the elements placed on
the main diagonal, etc., etc. These differences are frequently signifi-
cant in computation, especially if the computation must be done by hand;
they are of minor significance when computation is done on a high-speed
computer, and are mathematically insignificant.
Mathematically and computationally, the reduction procedure

can always be made to give a solution, regardless of the rank of A. This

follows because if A is of rank r, the equations and unknowns can be re-

ordered so that:

- r (n-r) -
PYqd Al A RS
o ; : _ r J r
(n-1) | Yo (a-1) | A1 A2 | (X2 (m-1) ,
L.
nx} nxl1
(n~1)

where A;; is non-singular. A general solution is the set consist-
ing of arbitrary-valued X; and the unique set of values for X; gotten
by solving:

Y1 - A X2 = A1) X

It can be shown that the procedure described is the most efficient direct

- 10 -



procedure using only elementary operations for solving the general problem.
This implies that it is also the most efficient direct procedure when

the A matrix has certain special properties such as symmetry, antisymmetry,
etc.

Table 2 shows (approximately) the number of operations and stor-
age spaces needed for a direct solution of the general problem including
the step from mxn to nxn matrix. If A is already square and symmetric,
the number of operations required for ATA can be dropped. If it is merely
square, however, this last number must be multiplied by some number be-
tween 1 and 3, depending on the type of solution employed.

Inversion procedures lie logically between reduction procedures,
which step by step reduce the size of the system to be solved, and enlarge-
ment procedures which start from a small, known solution and build upwards
from that point. 1In inversion procedures, the transformation from Y to
X is done all at one time by first finding A_1 and then carrying out the

operation:

As mentioned previously, the inversion method as a means of finding X
need not be considered seriously. First, it can be shown that in general
the number of operations required cannot be less than the number required
by the direct method; it will usually be greater. Second, there are many
solution procedures which will give a solution regardless of the 'condi-
tion" of the matrix. Because an inverse (or reciprocal) matrix has the

reciprocal-% of the determinant of the original matrix as a factor of each

element, the reciprocal matrix is not defined when the determinant D is zero.

- 11 -~




DIRECT PROCEDURE

Memoiy * X +
Al A (2M+1) N4M? (N24+N) (M=1) (N2+N)M 0
mxn nxm 2 2 2
3_qgn2 _ 3_gn2 _ -
ATh N2 2N3-9N2+13N-6 2N3-9N2+13N-6 N -N
6 6 2
T
Ay M+N M(N-1) NM 0
- N-1) (N-2 N-1) (N-2
N
y =y > 7
- N2-N N2-N
= 0
[N ) 2 2
2 Ao 2
TOTAL (N°+3N-2)M (N“+3N)M
2 2 NZ4N
2
+  2N3-6N2-2N +  2N3-3N24N
6 6
Table 2

- 12 -




Nevertheless, reciprocal matrices should be considered for their
own sake, since they are important in probability theory and will in all
practical cases have to be computed regardless of whether or not they are
used in the solution. When reduction procedures are used for the solution,
computation of the reciprocal matrix can conveniently be carried along at
the same time and by the same procedures. This follows because from the
definition of a reciprocal matrix:

I = AA s
we see that I and A—lcan be broken up into column vectors:

I, = AA"" .
i j

-1
The elements of Aj are solved for just as were the elements of X. Na-
turally, if exactly the same procedure were used there would be n times
as many operations required as in solving for X, since there are n col-

? 3

I. is different from zero, however, only those operations need be made

=1
umns Aj ; this would be about n4 operations. Since only one element of

which relate to the non-zero element, and it can be shown that the num-
ber of operations actually increases only as (again approximately)-ﬂ%.
Hence, simultaneous computation of X and A-1 can be done efficiently,
expecially if computations of the two are interlaced, i.e. if the proce-
dure is planned to have quantities computed in one part used in another
when possible. Table 3 gives estimates of the computational character-
istics of the (direct) reduction method and of the (direct) biorthogon-
alization method for inverting matrices, and includes for comparison the
characteristics of these methods and of the iteration method for solving

the main problem. Other inversion procedures will be discussed along

- 13 -~



MATRIX INVERSION

Operation and Storage Counts

Method & Prob. Add. & Subt.! Multi.! Division! Min. Stg.
Reduction %‘(n-l)(2n+5) each Ln (n+1) n(n+l)
Y = AX

Reduction % (2-1) (8n-1) each n (3n-1) 2n?

A
Reduction %-(n-l)(Zn-l) .% (n2~1) Ln (n+l1) Ln (n+l)
Al (Sym. A)
Biorthogonal

A--1 2n? (n-1) 2n3 -n? n? 2n?
Iterative Y=AX

n (n+l) n (n+l) 0 DATA + n

per cycle

Escalator A-l 4n3 /3 2n3 /3 n?
Total

Matrix Modif.

A"l 2n3 2n3 n42n

. -1

Iteration A
(totaling) 3n3 +2n 3n3 0 3n?
per cycle

The number of divisions can be reduced to n in every case by storage of

approximate reciprocals.

cordingly.

Table 3

- 14 -

The number of multiplications is increased ac-




with the discussions of the procedures for solving the main problem.
The square root or Banachiewicz method (Banachiewicz, 1938)

is one of a class of direct methods designed to take advantage of spe-
cial matrix characteristics —- in this case, symmetry. The symmetric
matrix A is split up into the product of two matrices:

A = BTB
where bij = 0 for i > j. Just as in the Gauss procedure, a vector K is
found from

Y = BTk ,
and X is found from

K = BX
by the same method. Although twice as many steps are required here as
in the corresponding Gauss procedure, the first part, in which B is

computed, makes up at least partly for this. Here:

i-1
biy = 85 ~ bii

k=1

i-1

45 ~ éga b bij
b.,, = j=z1i
H byy

bij = j < i

A careful analysis of the procedure shows that the number of operations is
actually somewhat larger than the number of an efficient Gauss procedure.

This is especially true if the number of square root operations is turned

- 15 =
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into an equivalent (for the computer) number of multiplications and

additions. Computation of a square root requires about 150us on an IBM
7094, while a multiplication takes about 5ys. Since only n square roots
are involved, however, this difference is insignificant when large sys-

tems are to be solved. Table 4 shows the estimated number of operations

involved.
SQUARE ROOT PROCEDURE
Add. and Subt. Multiplication Division Sq. Rt.
1/3 [n345n2-4n+3] 1/3 [n3+5n2-4n+3] 1/2 (n2+5n-2) n
Table 4
2.2 Partition Procedures

Partition procedures could be classed as reduction proce-
dures since they involve breaking the main system of equations into
a number of smaller systems each of which is more easily solvable (or
has been solved). It is included among the inversion methods because
the subsystems selected are independent, and non-overlapping, whereas
the subsystems computed in reduction or enlargement procedures are
subsets of each other (in sequence).

As with many other procedures, we find that the Frobenius-
Schur lemma (Bodewig, 1959) is the basis for the procedure. The sys-

tem:

-16 =
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is partitioned into subsystems:

—

Y3 (All Ayo rkl
= >
Y, Lézl Ajo sz
-1
such that A;), and
—1 -1 -1
A = (Axg - Apy Ayl Ayp)

can be easily computed. Then:

-1 r_311 Bli\

A =
Boy Boo
is composed of elements
-1 -1 -1
Byp = Ay (T+A1p & 7 Apy Ayl)
-1 -1
By = Ajp A2 A

-1 -1
Bpy = A Apy A

-1
By = A .

(The Frobenius-Schur lemma is a special case of a lemma applicable to

partitioning>into an arbitrary number of subsystems:
[v,0 = 14,0 1% :
It can be derived by judicious application of Cramer's rule.)
Evidently partition procedures offer no particular saving in
time or storage space. They are of importance when either some of the

subsystems have already been solved or (what is almost the same thing)

when the partitioning can be carried out so as to make enough of the

- 17 -



Aij into zero matrices that computation time is saved. In all subse-
quent discussions it will be assumed that the main system has already
been so partitioned, and that the system under discussion cannot be use-
fully partitioned further.

2.3 Enlargement Procedures

Under the enlargement category of procedures are grouped those
procedures which solve a sequence of linear systems each of which is a
proper subset of the succeeding system. They are distinquished in this
way from the reduction procedures in which the sequence runs the other
way, the size of the system to be solved being whittled down eventually
to one equation in one unknown, after which, by successive substitutions,
the rest of the system is solved as a sequence of single equations in

one unknown.

Enlargement procedures are, along with partition procedures,

based on the Frobenius-Schur lemma:

Ay LSEY
-1 : |
A = !
|21 Azl
T | r 1 -1 -1 -1
Al 0 ! P A1 Az &0 Agp Ay - A App A
= ! l D l ______
0 o i - -1 -1
"._ Wi .\. - A A21 All I A i
where,
-1 -1
6 = [Apy - A1 Al App] .

The linear equation problem:

- 18 -



. Xy 1
(o= a) ,
(Yo LXZ,
then has the solution:
rAxi} Ayy Ay, N (Apy X1 - Yp)
. )_(2_, i | - 871 (A1 Xy - Y)
where A%y = Xy - Xy
and X; is a solution of
Y1 = A X

The above procedure is particularly simple when A;% and X; are already
known and when A;; is a scalar; in other words, when X, consists of a
single element, for in that case A is a scalar, its reciprocal is immedi-
ately computable, and the formula for

A%,

il
N

| G—

| S

can be rapidly evaluated.

This same procedure gives, of course, also the reciprocal
matrix, at the cost of additional storage space and a little bit more
of computation. There are numerous variants of this procedure -- the
bordering and escalator procedures are best known. Sequential analysis
is also related to the above procedure, since e have:

-1

-1 7T
AXy = A {A17 Apy (Apy Xy - Y) )

where

1

g
1

-1 'I‘ -
(I - A1y Ay Apy)

- 19 -




and the original problem is

Y, A .
= Xy + AXy
SR |
where
Y, =41 Xy .

There is obviously little difference between reduction procedures
and enlargement procedures as far as number of operations required is con-
cerned. Major differences occur in the amount of storage space needed and
in the types of numerical checks (controls) used on the computations.

There is also a very considerable difference in the conditions under which
the procedures can be used; reduction procedures must apparently start
with the complete system, whereas the enlargement procedures can start with
whatever data are available and step-by-step build up the final solution

as more data arrive and more unknowns are added. This difference is more
apparent than real, for reduction procedures can be written to compute

downward from a given system to the previous smaller system.

It is worth pointing out here that the enlargement methods are
similar to the iterative indirect methods to be discussed below. Both
sets of procedures start from assumed solutions and work towards a final
solution; for enlargement procedures, the assumed solution happens to
be also an exact solution to a subset of the entire system. Because of
this similarity, the enlargement and iterative indirect procedures can
easily be used together on the same problem, or techniques useful to one
set of procedures can be applied to the other. This fact has many in-

teresting results which will be discussed in greater detail in a future

report.




2.4 Orthogonalization Procedures

Orthogonalization procedures have features linking them to
both direct and to the indirect procedures. They are certainly direct
procedures, since the number of steps involved is independent of the
values of A, Y, or the starting value X3. On the other hand, they start
from an assumed value X; of X, which makes them akin to the indirect
methods. The final value, X, is built up from Xy in a series of steps
such that:

x=x0+2k. AX, .
i 1 1

where the ki are coefficients and the AXi are orthogonal with respect
to some preselected matrix. (Note the similarity of the procedure to
expansion of a function into orthogonal polynomials). Because of the

orthegonality of the AXi one can easily show that 1)

n Tl
Y kg 8% 1 ] Xk ox ]
j j+l1

and that 2)

k, AX, = 0 for i >n
i i

where n is the rank of A.
The conjugate gradient method is an orthogonalization procedure

in which the AXi and ki are derived from the successive residuals AYi'

Y

[}
<
{
<

i i
Y. = AX,
1 1
A
X, = X + L k. 8%,
j=1
- 21 -




Its computational characteristics are shown in Table 5.

CONJUGATE GRADIENT PROCEDURES

Storage Add. & Subt. Mult. Div.
Single Step 6n2+18n+7 2n2+5n-4 3n2+7n 2
Cycle 6n2+18n+7 n(2n2+5n-4) n(3n2+7n) 2n
Table 5

Several characteristics of orthogonalization procedures are of
importance.

1) Although the procedures are in theory applic-
able to any non-singular system, they are
practically limited to systems with positive
definite matrices. Solution of a general
system involves at some stage conversion to
a positive definite system, introducing n3/2
multiplications and n3/2 additions (approxi-
mately).

2) The number of operations in an orthogonali-
zation procedure is greater than the number
in a reduction direct procedure by a factor
of at least 3 in the general case. Its use
must, therefore, be justified on grounds
other than that of economy of operation. Jus-
tification follows from the fact that the
smaller the difference X - Xp, the smaller
are the successive corrections kX{ and, there-
fore, it can be assumed that the computation
sequence can be set up to reduce round-off
error accumulation below what is encountered
in the reduction direct procedures. It seems
reasonable to expect that round-off error ac-
cumulation could be minimized by setting:

n
X0+Z

k, AX, = Xp
j=1 J ]

- 22 -




and starting a new cycle in an indirect
procedure such as the Gauss-Seidel.

2.5 Indirect Procedures

2.5.1 Universally-Convergent Procedures

To retain the precision of the classification given in Table 1,
a distinction is made between those procedures which always approach a
limit regardless of the make-up of the system and those procedures whose
convergence depends on characteristics of the system, on the initial
solution assumed, etc. A further distinction could be made between n-step
procedures, which theoretically are complete after n-steps (where n is
the order of the A matrix), and unlimited step procedures which have
no pre-determinable number, of steps to convergence. There are many points
of similarity between the reduction direct procedures and n-step methods
that these are usefully placed in the equivalence (inversion) group.

As an example of the universally-convergent procedure the
projective method of J. Hawkins (1967) may be cited. This procedure

is more fully described in the next section, but in simplest terms it de-

fines the solution of:

Y = AX

to be the coordinates of intersection of a certain plane with the perpen-

dicular from the origin to that plane, and solves for a sequence of

planes and foot-points. There are many resemblances between the Hawkins,

Kacmarz, and Cimmino procedures, so it may be assumed that the number of

operations involved are of the same order of magnitude for each. Table

6 gives estimates of the computational effect involved.
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2.5.2 Conditionally Convergent Procedures

A conditionally convergent procedure is one whose convergence
depends upon the numerical values of the A matrix elements. The univers-
ally convergent procedures discussed above and in Section 3 will converge
at least to some value of X regardless of the rank of A or its condition
numbers. For example, the commonly used Gauss-Seidel and over-relaxation
methods require for convergence that A be positive definite; this is a
severe restriction. The advantages of conditionally convergent procedures
are that:

1) although the number of steps required
to arrive at an exact answer is in
theory infinite (in general), the num-
ber of steps needed to reduce the de-
viation from the exact answer to a
tolerable value is finite and may be
less than the number required by a di-
rect procedure.

2) The precision of an indirect procedure
is limited to round-off error accumu-—
lation. This error 1imit is, however,

approximately proportional to n?/3 and
is independent of the number of steps
taken. The round-off error limit for
any direct method is approximately pro-
portional to n . If, for example, 4
significant figures are lost in the in-
direct method because of round-off, 8
significant figures could be lost solv-
ing the same problem with a direct pro-
cedure.

3) As a general rule, the amount of storage
space (in bits) needed by direct methods
is not (except in certain variants of the
orthogonalization procedures) lessened by
any prior knowledge. Indirect procedures,
in general, are benefited by using prior

knowledge -~ the number of steps and
amount of storage space needed are both
diminished.
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Table 7 shows the minimal computational requirements for any
iterative procedure for the first cycle and for the total number of
cycles and steps needed to bring all elements of X to the required
precision. Since (assuming m=n) the number of operations needed by a
direct procedure cannot be less than about n3/3; a conditionally convergent
procedure can go through n/3 complete cycles before losing to direct pro-—
cedures inefficiency. Furthermore, at this point it will have lost only
half as many significant figures through round-off error.

The advantages of indirect procedures are balanced or cancelled

by several other considerations.

1) If, as is usually the case in practi-
cal problems, the reciprocal matrix
must be computed or ATA computed, the
number of operations for the combined
computation is immediately of the order
n3 regardless of whether or not indirect
procedures are used.

2) Convergence for many indirect proce-
dures is guaranteed only for special
kinds of matrices —-- usually positive
definite matrices. The rate of con-
vergence is dependent on the Xy initi-
ally chosen and to be made reasonably
large may further require knowledge
(usually by computation) of quantities
not directly accessible such as the A
matrix spectral radius.

Table 8 shows the computer requirements of two common conver-
gence-conditional (C.C.) indirect procedures; the point relaxation and
gradient procedures. All of the procedures listed in the table could be

classified as relaxation procedures, since they are variants of the same

equation:

X(m+1) (m)

= BX + CY .
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The equation:

represents in fact, the procedures:

X(m+1) = (D +w L) {(l-w)D-wU} X(m) + oY .
under-relaxation <

- Gauss-Seidel according as w\ = 1 .
over-relaxation >

U, D, and L are the upper triangular, diagonal, and lower triangular compon-

ents of A.

C.C. Indirect Procedures are even more varied than the direct

methods, and there are interesting relations between them. The relation

of the most important of these to very large systems will be studied in more

detail in Section 6.. Some comments at this point are necessary.

1)

2)

Most procedures of this type require

that the matrix A be positive definite.
The reason is geometrically obvious.
Successive approximations take one in-
ward toward the center of a family of
surfaces. A positive definite matrix
defines a family of hyper-ellipsoids,

and there is no difficulty in proceeding
to the center. If the matrix is not posi-
tive definite, the hyper-surfaces (cor-
responding, e.g. to "hyper'-hyperboloids)
may diverge to infinity and successive
approximation diverge along with them.
This difficulty could be overcome, but
possibly only by modifying the procedure
to the point where it is no longer com-
petitive with a direct procedure.

The estimates given in Table 8 for over
and under relaxation methods do not in-
clude the operations needed for computa-
tion of w. If w is computed for maximum
rate of convergence the value of w which
minimizes the spectral radius (i.e. maxi-
mum eigenvalue) of
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T i

(D+wl) "1 {(1-w)D-wU} ,

must be found. The process of finding or

estimating the spectral radius and its mini-
mizing parameter w can be simple or compli-
cated.
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3. THE HAWKINS UNIVERSALLY CONVERGENT INDIRECT PROCEDURE
The Hawkins' procedure was described in a previous report,
CR-66-198-1. It was derived to have available a procedure that would
converge under all conditions, but extension of the principles used in
it to other C.C. indirect procedures has seemed to have promise. Further,
investigation of the method reveals that it has many points of resemblance
to the methods of Kacmarz and of Cimmino (Bodewig, 1959). There are dif-
ferences, however, which could be valuable.
Suppose our linear system (of dimension n) is:
Ax = f . (1
Kacmarz's method is given by:
¥oel T X Tog Ay

where

= - 2
%o (x) Ay - £)/47

Usually, however, A is transformed beforehand so that Ai 1, in which case:

a, == (XR Ai - fi) .

To prepare system (1) for my method, first divide each equation

by fi’ so that:

where
' —
Ai = Ai/f' .

In matrix notation:
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(2)

The row vectors of A' define an n-1 dimensional hyper-plane H. If P
is the point in H whose associated vector (from the origin) is normal

to H, then:
x = P/P? .

Given a point X, in H and a row Ai of A', the method is given by:

= -
Kol = Xy toap (xp - AD)
where
- xp (xp - Ay )
G’Q, = ,
(x2 - Ai)

Where Kacmarz iterates with the same set of vectors (the Ai)’ the above
method creates a new vector (Xl - Ai) for each iteration. The formula
for a is essentially the same 1in each case.

Suppose from system (2) we form n-1 vectors:

Vi = Ai - A, i=2,...,n (3)

then the iterative process becomes:

where

a =-x_ V., /v2 .
i’

The process in this case is exactly the same as that of Kacmarz.
The difference mentioned earlier is that now we are dealing
with n-1 vectors (the Vi) instead of n (the Ai). Thus, the rate of con-

vergence depends on the n-1 vectors Vi' Suppose we rewrite equation (3),
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V, = A, A, - Ay . (3)'

The condition of the vectors Vi now depend on the n-1 real numbers Ai.
Hopefully, a simple iterative technique can be found which produces the
optimum set of Ai’ i.e. the xi which optimize the condition of the Vi.
In Table 8 (Section 2.5.2 proceding) is given a comparison of those
characteristics of the Kacmarz, Cimmino, and Hawkins procedures which

are of importance computationally,
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4, THE MATRIX AS A CONTINUOUS PROCESS
In the preliminary report CR-66-198-1, a description was
given of the investigations made into densification procedures. The
reasoning is that as the size of linear systems
AY = AAX
increases (i.e. as the rank of A increases) there is a possibility that

some of the gross characteristics of the system can be approximated by

y(i) = f fa(i,j) dx(j).
i ]

There is no mathematical justification for this assumption, but there is

the analogy:

adequate physical justification. The physical meaning of allowing n to
increase is that a very large number of samples (observations) are taken
from the universe described by A and that the number of observations and
the number of causative factors keep in step. Since this would imply

the impossibility of adequately describing the universe by means of a
small number of variables, physics requires that the X vector be describ-
able as a function of a finite, usually small, number of variables. For
examples, the Y vector might be a series of range or angle measurements
and X the corresponding positions of a space probe or satellite; Y might
be the measured coordinates of star images and X the corresponding set of
star positions; Y might be direction and height measurements of ground

points and X the spheroidocentric coordinates of these points; etc., etc.
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In every example except perhaps the second, it is obvious that the X
vector is not composed of completely independent variables. Even in the
astrometric example, the elements of X are connected by common membership
in a globular cluster or in the same associgtion, or in the same galaxy,
etc. Therefore, one can justify the assumption that when n is increased
far enough relations begin to appear between the elements of X.
Nevertheless, there are serious objections to use of this
analogy, and investigation into this aspect is going on. A separate re-

port will be made on the results of these investigations.



5. INVESTIGATION OF TOPOLOGY OF LARGE MATRICES

In the INTRODUCTION a connection was traced (in general terms)
between matrix theory and topology theory. (The term '"theory" is used
here in the same sense as defined in Merriam-Webster Second Internation-
al Dictionary. It will never be used to designate a particular kind of
set as is sometimes done in topology theory.) The connection is possible
because parts of each theory can be described interms of group theory
concepts. It can be made more concrete as follows.

Let A be an ng * mg matrix; suppose np > my with the understand-
ing that results for ng 2 mg apply with appropriate interchange of terms
of matrices for which ny < mg. By addition first of row multiples and

then of column multiples A is converted to the canonical form:

~ a
€11 ;
0 z
i €22 |
A 0 , 0 i
= i
B 0
€. .
11 H
5_
b, o |
1]
L . B
where:
€, is + 1 or O,
ii
b.. is 0 if €., is 0, and
ij ii

+ 1 or 0 otherwise.
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The following statements are then self-evident.

Any matrix Q (nxmgg) with

qij =0 for j <mpy-r, and
for j = k if €pr = 0

can then be written as a multiple of

(A 0]
r X mgp s
Q = R [A 0]
nXmg =nXxr r X my ’

or, if [A 0] is that submatrix of [A O] containing only the non-zero rowsy

Q = R [A 0] .
For many purposes the matrices [6] and [Q], where [6] is the submatrix of
[Q] with the columns m > r omitted, mean the same thing, in which case Q

is generalized to:
Q (n xm; m £ mgp) .

Furthermore, if the transformation is limited to the type
S|
A" =T AT

where T is a non-singular matrix, then A can be transformed into the Jordan

cononical form:

Ay

-~ 37 -




where the Ai are of the form:

A, 1 0 A
i
0 A, 1
i
]
1 |
|
0 Ai
- - i
with Pi eigenvalues along the main diagonal, 1's along the A.j j+1 sub-
b

diagonal, and zeros everywhere else. If A is the given matrix, then the
number of zero columns in the Jordan canonical form is the Betti number

of the group generated by A; the Torsion coefficients are the products;

T Pi i=1,2,...4n

It can easily be shown that two matrices are similar if, and

only if, they have the same Betti numbers and torsion coefficinets. Now

a finitely-generated commutative group can obviously be represented as
the product of 1) a number of groups which are not cyclic, and 2) a
number of sub-groups which are cyclic. The number of non-cyclic sub-
groups required is the Betti number; the orders of the cyclic groups are
the torsion coefficients, and the finitely-generated group is determined
to within an isomorphism by the Betti-numbers and torsion coefficients.
The "obviousness'" follows if the A matrix and the matrices derived from
it by similarity transformations are regarded as group representations.
Relating surfaces and groups is slightly more difficult than

relating matrices and groups. Much of the difficulty in topology theory
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arises from 1) the lack of rigor in the theory, and 2) from semantic dif-
ficulties casued by attempting to have the theory include various kinds
of non-finite sets. Careful analysis of the logical structure of topo-

logy theory shows, however, that theory is reducible to a few concepts of

real importance.

1) It is assumed that any surface of interest
can be approximated well enough by a set
of connected triangular surfaces.

2) Defining point and line to be degenerate
forms of a triangulation can be extended
to any number of dimensions.

3) The subject matter of topology is limited
by implicit definition to those properties
of surfaces which can be described by 1) a
simple listing of the vertices of the as-
sociated triangulation and 2) the rules for
connecting the vertices and triangular sur-
faces. In fact, the term "surface'" in to-
pology means simply a) a set of points (in
the Euclidian sense) that are related to
each other by the given allowable rules or
b) a set of quantities (geometric or mathe-
matical) which can be related to the point
set (1) in such a way that the rules for (1)
are not violated. Combinational topology
theory (the theory of surfaces as it can be
described as combinations of points) for
esthetic reasons starts at a level of gen-
erality far greater than can be accommodated
by the inevitable restriction that the sur-
face must be describable as a set of symbols
Pi with rules connecting the symbols.

In view of the proceding general remarks discussion of the sur-
face-to-group relationship will be carried out at the intuitive level;
rigorous deviation of non-trivial results would require among other things
a revision of the basic theories of combinational and set topology, and

this is far outside the scope of the present investigation. Furthermore,
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although the discussion will be in terms of triangular surfaces, the

discussion can apply to any dimension by substitution of suitable terms.

1)

2)

A surface is a set of triangular surfaces
(TS) which are combined according to cer-
tain rules. These in essence give meaning
to linear combinations of TS, and such
combinations are called chains and denoted
by Ck where k is the (Euclidean) dimension
number of the surfaces. That is, a chain
ck is:

n
Ci = E: ai. Sk
i=1 1 3

. , . k
where i denotes a particular chain and Sj
is a k dimensional element of the sur-
face.

The chains Ck which '"describe" a particu-
lar surface form a group. They, therefore,
have bases. Furthermore, each base ck has
a boundary chain associated with it:

ck-1 = 3¢k

where: 553 -/ 0 accordingly as,

k-1 incident with same orientation\
s, are

not incident
“ incident with opposite orienta
| tion.
.
Hence, a surface generates a sequence of matrices
0k whose columns are labelled by the elements of
the k base chain and the rows by the elements of
the base of the k-1 boundary chain, and whose ele-
ments are s%j.
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3) It is fairly obvious, from the foregoing,
that bases can be chosen for the k chain
groups in such a way that the incidence
matrices have the cononical form:

K .
%) .
' 0 .
k .
, 12 . 1
. 0
0 : ‘ |
5 k i
{ T .
f v 1
{! . . . . . . . . . . . . . . - ;
3 5
i 0] 0 J

where the T? are the torsion coefficients
of unity. The torsion coefficients were
described earlier.

At this point, therefore, we have established the sought-for
relation between surfaces and matrices, and this connection will for the
time being suffice. The next step is to relate the computability of a
large system to the surfaces characterized by the torsion coefficients
and Betti numbers, to see if topology theory can assist in simplifying
the computational procedure. A beginning on this has been made. It is
described in Section 2 of the preceding report. In that report, the
quantities Ci,, ng were defined in such a way that they gave the amount
of incidence between rows i and 3 or between columns i and 5, respective-

ly. Their utility in estimating the computability of a system is shown

for the computation of:
B = ATA

in Table 9. The relations between (Cij, ng) torsion coefficients T

and Betti numbers Bk will be investigated to see:
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COMPUTATION OF ATA

METHOD MEMORY IN/OUT . y
. . (N24N) (2M+1) (N24N) (M-1) (N2+N)M
Cij’ Cij # 0 2 - 2 2

2 i 2 =c _ 2 =c
< -y (N +N)(2Cii+1) (N +N)(Ci_] 1) (N>+0) T
iy ~ 2 2 2

=c ~r =T

CLHN) (M-1 NC, ., +N

o (NC+1) (24+1) (NC; +1) (M-1) (NC, . +N)M
ij ~ 2 2 2

-r -C -1 -C =Y =C
o - N(Ciiﬂ)(z,ciiﬂ) N(Cij+1)(ci1' 1) N(C +1)C_ .
i3* i -~ 2 2 2

Table 9
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1) how far one set may be computed from
the other;

2) how these quantities change with in-
creasing size of the system; and

3) what their geometric significance is
as the size of the system increases
and the matrix is densified.

It appears at present as if the (ng, ng) is easier to use than the
(<"

k ’ . . e .
, B ) set and has more computational significance (or at least is

easier to interpret computationally).



6. COMPUTATION PROCEDURES

In the previous report there was a discussion of the effective-
ness of various kinds of iterative (i.e. indirect) procedures for solving
very large systems. The conclusion was reached that the only indirect
procedure which would function efficiently in general was one which 1)
started off from a reasonably close approximate solution, 2) converged

regardless of the '"condition" of the A matrix of the system, and 3) made

use of the results of preceding iterations to improve the results of the
current iteration. Many details are gone into in the previous report and
are not needed here. An outline of the "optimum" procedure, as it looks
at present, is given below to show the relation of the various parts of
this report to the over-all investigation.

6.1 The Linear System

Y = AX

is to be solved for X and for (ATA)_l.

6.2 Preliminary Handling and Computation

6.2.1 The -system is approximated by continuous functions if feasible

and approximate values of X and (AiA)—lcomputed, along with such estimates

of the errors in X and (ATA)_1 as may easily be computed. The dN error in

Nz (aTa)

that is caused by errors in (ATA) = n is well known; it is

dN,. = 9. . N, N, dn )
ij Kk . ik “j% k2
- 44 ~
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To compute [dN] by matrix procedures would be not only difficult but fool-

ish at this stage. Computation by approximate methods may be feasible.
6.2.2 If the results of 6.2.1 are favorable, the system is rearranged

to group zero elements and non-zero elements into blocks, etc.

6.2.3 Topological invariants on the Czj’ ng numbers are computed.
6.3 The matrix ATA Z n is computed.
6.4 Using an approximate value of X derived from 6.2.1 or from an

approximate solution of

A"y =nX

where n is a matrix derived from n by suppression of elements according to

a scheme dictated by the numbers derived in 6.2.2, an iterative procedure

is started.

™Dy ex®
3 S S R LR
ph Ny + sn™
syn™ = C5N(m-1)
(m)

The successive vectors X will contain fewer and fewer significant

figures or will contain a constant number with decreasing maximum magni-

(m)

tude. The §&X form a sequence whose value at step (m+r) is estimated.

(m+1) directly to 6X<m+k). As m in-

The iteration then procedes from §X
creases, the value of k can be expected to increase also.

6.5 Computation is stopped when a preset limit on some function of

§X and/or 8N is reached.
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7. SUMMARY

Investigation of procedures for solving very large linear
systems has gotten to the following point.
7.1 A procedure has been derived for solving a linear system for
any order of any rank, and with arbitrary sized condition numbers. This
procedure may be considered a variant of the Kacmarz and Cimmino procedur-
es, which has some advantages in computation characteristics and in flexi-
bility.
7.2 A start has been made on the simulation of very large systems

by functions. Such simulation is inadequate for exact computation but may

2) estimating the effects of errors in the Y and A matrices on the X matrix.
7.3 Tentative identification has been made of computability criteria,
the Cij and ng numbers, which can be used in planning the solution of very
large linear systems. These numbers have other properties which relate them
to incidence matrices and hence to geometric structures which can be investi-
gated by topology theory.

7.4 A study of the computational characteristics of various known
procedures shows that for solution of very large linear systems an iterative
procedure is probably the best. It is suggested that the most flexible pro-
cedure, which at the same time is reasonably efficient, would be one involv-
ing the following steps.

7.4.1 An initial approximate solution is obtained by a direct method

or by replacing the system by a bivariate function.
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7.4.2.1 If the system is singular or poorly conditioned, a univer-
sally convergent procedure modified to allow use of production sub-
procedures may be required.

7.4,2,2 If the system is reasonably well conditioned, a conditionally
convergent indirect (iterative) procedure adapted to the particular
system being studied should be used. Methods of adaptation are still
being investigated; they may be related to topological invariants dis-
cussed earlier. Predictive procedures (also called semi-iterative or
universal proéedures) are apparently superior to or at least as good

as other procedures.

7.4.3 Where needed, the reciprocal matrix of the system is computed
if possible at the same time as the solution. Otherwise relevant por-
tions of the solution are stored (on magnetic tape) and used in a later
computation of the reciprocal matrix.

7.5 Direct sequential procedures are inferior to straight Gaussian
procedures or indirect procedures except in those cases where the system
to be solved is not all present at one time but is presented in parts,
as in the immediate reduction of continually arriving data. Even here,
the direct sequential procedures may be inferior to indirect procedures
if the ultimate in precision is wanted.

7.6 Within the limits of the amount of time left, further investi-
gation is planned to procede along the following lines.

7.6.1 Study of simulation of a large system by bivariate functions
will be pushed. Special attention will be given to use of such functions
for computing an approximate solution of the system and for computing error
estimates.
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7.6.2 The relation of the computational characteristics of very
large linear systems to topological invariants will be pursued.

7.6.3 Further equations will be derived for use in predictive indi-
rect procedures, and the solution process for very large linear systems

formalized.
7.6.4 Little attention has been paid so far to the propagation of

errors through the system. This will be given close attention in the

next phase.
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